Antibody specificity is one of the key issues in
determining whether you have an antibody that works. How does one determine that the antibody
specifically recognizes only the target of interest? There are a number of control procedures one
can use to be sure that the signal generated in the antibody based assay truly
and quantitatively represents the presence of the target of interest.
In western blots one can at least partially address
this issue by determining that the relative molecular weight of the antibody
signal matches that of the target. However in most other antibody based imaging
assays (e.g. IHC and IF) no such information is available and thus determining
specificity in such assays is even more critical. One of the most common controls for antibody specificity utilizes
the antigen that was used to make the antibody as a blocking control.
Unfortunately
the value of this control is often greatly overestimated. For example take a case where an antibody
raised against a protein antigen recognizes only a single epitope in the
protein. Assume for example that this antibody
is non-specific and its epitope is also found in a number of other proteins.
The antibody will thus recognize its epitope in all of those other proteins as
well as in the target protein and thus in IHC it may give a very strong signal
as it is detecting many proteins in the tissue.
When one adds the immunizing antigen (which contains the epitope) to the
antibody labeling assay, the antigen blocks the antibody labeling of all the
proteins which contain the epitope. Thus
it gives a complete block of all IHC signal.
Normally that is interpreted as indicating that the antibody is
specific. Clearly in this hypothetical case the blocking
control failed because in fact the antibody was NOT specific.
This effect can be seen in the Figure at
right. In this western blot as shown in
lane 1, an antibody raised against synaptotagmin labels three unknown protein bands
in addition to the 60k band representing synaptotagmin. When the blocking control is used (lane 2) the
labeling of the specific 60k band and all three non-specific bands is blocked. So the blocking control eliminated all of the
antibody signal but the antibody was clearly not specific for synaptotagmin.
Thus anytime an antibody is non-specific and recognizes
an epitope that is present in more than one target, the antigen blocking
control is virtually useless. Since this type of cross reactivity or
non-specificity is the one of the most troublesome types of antibody non-specificity,
I would argue that antigen block is only one control to be used and that it is
a relatively weak control for antibody specificity.
One of the best controls for antibody
specificity is recombinant tissue that has been engineered to lack the target
antigen. When using such tissue one
should see no antibody signal in contrast to wild type tissue. Phosphatase treated tissue is another one of
the best controls is to use when testing phospho-specific antibodies. Provided that the phosphatase can
dephosphorylate the target, the signal from a phosphospecific antibody should
be eliminated from the phosphatase treated tissue with no change in the total
amount of the target protein compared to untreated tissue.